
Chapter 2 Chapter 2

Fundamentals of the Analysis Fundamentals of the Analysis
of Algorithm Efficiencyof Algorithm Efficiency

Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Analysis of algorithmsAnalysis of algorithms

Issues:Issues:
tt•• correctnesscorrectness

•• time efficiencytime efficiency
•• space efficiencyspace efficiencyspace efficiencyspace efficiency
•• optimalityoptimality

Approaches:Approaches:
•• theoretical analysistheoretical analysis
•• empirical analysisempirical analysis

2-1Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Theoretical analysis of time efficiencyTheoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of Time efficiency is analyzed by determining the number of
repetitions of the repetitions of the basic operationbasic operation as a function of as a function of input sizeinput sizepp pp pp

Basic operationBasic operation: the operation that contributes most : the operation that contributes most
towards the running time of the algorithmtowards the running time of the algorithm

input size

TT((nn)) ≈≈ ccopopCC((nn))
running time execution time

for basic operation
Number of times
basic operation is

executed

2-2Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Input size and basic operation examplesInput size and basic operation examples

ProblemProblem Input size measureInput size measure Basic operationBasic operation

Searching for key in a Searching for key in a
list oflist of nn itemsitems

Number of list’s items, Number of list’s items,
i.e.i.e. nn Key comparisonKey comparisonlist of list of nn itemsitems i.e. i.e. nn

Multiplication of two Multiplication of two
matricesmatrices

Matrix dimensions or Matrix dimensions or
total number of elementstotal number of elements

Multiplication of two Multiplication of two
numbersnumbersmatricesmatrices total number of elementstotal number of elements numbersnumbers

Checking primality of Checking primality of
a given integera given integer nn

n’n’size = number of digits size = number of digits
(in binary representation)(in binary representation) DivisionDivisiona given integer a given integer nn (in binary representation)(in binary representation)

Typical graph problemTypical graph problem #vertices and/or edges#vertices and/or edges Visiting a vertex or Visiting a vertex or
traversing an edgetraversing an edge

2-3Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

traversing an edgetraversing an edge

Empirical analysis of time efficiencyEmpirical analysis of time efficiency

Select a specific (typical) sample of inputsSelect a specific (typical) sample of inputs

Use physical unit of time (e.g., milliseconds)Use physical unit of time (e.g., milliseconds)
oror

Count actual number of basic operation’s executionsCount actual number of basic operation’s executions

Analyze the empirical dataAnalyze the empirical data

2-4Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

BestBest--case, averagecase, average--case, worstcase, worst--casecase

For some algorithms efficiency depends on form of input:For some algorithms efficiency depends on form of input:

Worst case: CWorst case: Cworstworst((nn)) –– maximum over inputs of size maximum over inputs of size nn

Best case: CBest case: Cbestbest((nn)) –– minimum over inputs of size minimum over inputs of size nn

Average case: CAverage case: Cavgavg((nn)) –– “average” over inputs of size “average” over inputs of size nn
•• Number of times the basic operation will be executed on typical inputNumber of times the basic operation will be executed on typical input

NOT the a erage of orst and best caseNOT the a erage of orst and best case•• NOT the average of worst and best caseNOT the average of worst and best case
•• Expected number of basic operations considered as a random variable Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all under some assumption about the probability distribution of all
possible inputspossible inputs

2-5Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

possible inputspossible inputs

Example: Sequential searchExample: Sequential search

Worst caseWorst case

Best caseBest case

2-6Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Average caseAverage case

Types of formulas for basic operation’s countTypes of formulas for basic operation’s count

Exact formulaExact formula
e g C(e g C(nn) =) = nn((nn 1)/21)/2e.g., C(e.g., C(nn) =) = nn((nn--1)/21)/2

Formula indicating order of growth with specific Formula indicating order of growth with specific g g pg g p
multiplicative constantmultiplicative constant

e.g., C(e.g., C(nn)) ≈≈ 0.5 0.5 nn22

Formula indicating order of growth with unknown Formula indicating order of growth with unknown
multiplicative constantmultiplicative constantmultiplicative constantmultiplicative constant

e.g., C(e.g., C(nn)) ≈≈ cncn22

2-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Order of growth Order of growth

Most important: Order of growth within a constant multiple Most important: Order of growth within a constant multiple
asas nn→∞→∞as as nn

Example:Example:
•• How much faster will algorithm run on computer that is How much faster will algorithm run on computer that is

twice as fast?twice as fast?

•• How much longer does it take to solve problem of double How much longer does it take to solve problem of double
input size?input size?input size?input size?

2-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Values of some important functions as Values of some important functions as n n →→∞∞

2-9Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Asymptotic order of growthAsymptotic order of growth

A way of comparing functions that ignores constant factors and A way of comparing functions that ignores constant factors and
small input sizessmall input sizessmall input sizessmall input sizes

O(O(gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow no fasterno faster than than gg((nn))

ΘΘ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at same rateat same rate as as gg((nn))

ΩΩ((gg((nn)): class of functions)): class of functions ff((nn) that grow) that grow at least as fastat least as fast as as gg((nn))

2-10Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

BigBig--ohoh

2-11Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

BigBig--omegaomega

2-12Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

BigBig--thetatheta

2-13Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Establishing order of growth using the definitionEstablishing order of growth using the definition

Definition:Definition: ff((nn) is in O() is in O(gg((nn)) if order of growth of)) if order of growth of ff((nn)) ≤≤ order order
of growth ofof growth of gg((nn) (within constant multiple),) (within constant multiple),of growth of of growth of gg((nn) (within constant multiple),) (within constant multiple),
i.e., there exist positive constant i.e., there exist positive constant cc and nonand non--negative integer negative integer
nn00 such thatsuch that

≤≤ ≥≥ff((nn)) ≤≤ c gc g((nn) for every) for every nn ≥≥ nn0 0

Examples:Examples:Examples:Examples:
1010nn is O(is O(nn22))

55nn+20 is O(+20 is O(nn))

2-14Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Some properties of asymptotic order of growthSome properties of asymptotic order of growth

ff((nn)) ∈∈ O(O(ff((nn))))

ff((nn)) ∈∈ O(O(gg((nn)) iff)) iff gg((nn)) ∈Ω∈Ω((ff(n))(n))

If If ff ((nn)) ∈∈ O(O(gg ((nn)) and)) and gg((nn)) ∈∈ O(O(hh((nn)) , then)) , then ff((nn)) ∈∈ O(O(hh((nn))))

Note similarity withNote similarity with aa ≤≤ bbNote similarity with Note similarity with a a ≤≤ bb

If If ff11((nn)) ∈∈ O(O(gg11((nn)) and)) and ff22((nn)) ∈∈ O(O(gg22((nn)) , then)) , then
ff11((nn)) ++ ff22((nn)) ∈∈ O(max{O(max{gg11((nn),), gg22((nn)}))})

2-15Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Establishing order of growth using limitsEstablishing order of growth using limits

00 order of growth of TT((n)n) < order of growth of gg((nn))

limlim TT((nn)/)/gg((nn) =) = c c > 0> 0 order of growth of TT((n)n) = order of growth of gg((nn))
nn→∞→∞

∞∞ order of growth of TT((n)n) > order of growth of gg((nn))

Examples:Examples:
• 1010nn vs. vs. nn22

• nn((nn+1)/2 vs. +1)/2 vs. nn22

2-16Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

L’Hôpital’s rule and Stirling’s formulaL’Hôpital’s rule and Stirling’s formula

L’Hôpital’s rule: If L’Hôpital’s rule: If limlimnn→∞→∞ ff((nn) =) = limlimnn→∞→∞ g(ng(n) =) = ∞∞ and and
the derivativesthe derivatives ff´́,, gg´́ exist, thenexist, thenthe derivatives the derivatives ff , , gg exist, thenexist, then

ff((nn))limlim =
f f ´́((nn))

´́
limlim

gg((nn))nn→∞→∞
 g g ´́((nn))nn→∞→∞

Example: log Example: log nn vs. vs. nn

Stirling’s form la:Stirling’s form la: !! (2(2))1/21/2 ((/e)/e)nnStirling’s formula: Stirling’s formula: nn! ! ≈≈ (2(2ππnn))1/2 1/2 ((nn/e)/e)nn

Example: Example: 22nn vs. vs. nn!!

2-17Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Orders of growth of some important functionsOrders of growth of some important functions

All logarithmic functions logAll logarithmic functions loga a nn belong to the same classbelong to the same class
ΘΘ((log log nn)) no matter what the logarithm’s base no matter what the logarithm’s base a a > 1 is> 1 is

All polynomials of the same degree All polynomials of the same degree k k belong to the same class: belong to the same class:
aa nnkk ++ aa nnkk--11 + ++ + aa ∈∈ ΘΘ((nnkk))aakknn + + aakk--11nn + … + + … + aa0 0 ∈∈ ΘΘ((nn))

Exponential functions Exponential functions aan n have different orders of growth for have different orders of growth for pp gg
different different aa’s’s

orderorder loglog n <n < orderorder nnαα ((αα>0) < order>0) < order aann < order< order nn! < order! < order nnnnorder order log log n < n < order order nnαα ((αα>0) < order >0) < order aann < order < order nn! < order ! < order nnnn

2-18Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Basic asymptotic efficiency classesBasic asymptotic efficiency classes

11 constantconstant

log log nn logarithmiclogarithmic

nn linearlinear

n n log log nn nn--loglog--nn

nn22 quadraticquadraticnn22 quadraticquadratic

nn33 cubiccubic

22nn exponentialexponential

nn!! factorialfactorial

2-19Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

nn!! factorialfactorial

Time efficiency of nonrecursive algorithmsTime efficiency of nonrecursive algorithms

General Plan for AnalysisGeneral Plan for Analysis

Decide on parameter Decide on parameter nn indicating indicating input sizeinput size

Identify algorithm’s Identify algorithm’s basic operationbasic operationy gy g pp

Determine Determine worstworst, , averageaverage, and , and bestbest cases for input of size cases for input of size nn

Set up a sum for the number of times the basic operation is Set up a sum for the number of times the basic operation is
executedexecuted

Simplify the sum using standard formulas and rules (see Simplify the sum using standard formulas and rules (see
Appendix A)Appendix A)

2-20Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Useful summation formulas and rulesUseful summation formulas and rules

ΣΣll≤≤ii≤≤uu1 = 1+1+…+1 = 1 = 1+1+…+1 = u u -- l l + 1+ 1
In particular, In particular, ΣΣll≤≤ii≤≤uu1 = 1 = n n -- 1 + 1 = 1 + 1 = n n ∈∈ ΘΘ((nn)) p ,p , ll≤≤ii≤≤uu (())

ΣΣ11≤≤ii≤≤nn ii = 1+2+…+= 1+2+…+nn = = nn((nn+1)/2 +1)/2 ≈≈ nn22/2 /2 ∈∈ ΘΘ((nn22))

ΣΣ11≤≤ii≤≤nn ii22 = 1= 122+2+222+…++…+nn22 = = nn((nn+1)(2+1)(2nn+1)/6 +1)/6 ≈≈ nn33/3 /3 ∈∈ ΘΘ((nn33))

ΣΣ00≤≤ii≤≤nn aaii = 1= 1 + + a a +…+ +…+ aann = (= (aann+1 +1 -- 1)/(1)/(a a -- 1) for any 1) for any a a ≠≠ 11
In particularIn particular ΣΣ 22ii = 2= 200 + 2+ 211 + + 2+ + 2nn = 2= 2nn+1+1 11 ∈∈ ΘΘ(2(2nn))In particular, In particular, ΣΣ00≤≤ii≤≤nn 22ii = 2= 20 0 + 2+ 21 1 +…+ 2+…+ 2nn = 2= 2nn 11 -- 1 1 ∈∈ ΘΘ(2(2nn))

ΣΣ((aaii ±± bbii) =) = ΣΣaaii ±± ΣΣbbii ΣΣcacaii = = ccΣΣaaii ΣΣll≤≤ii≤≤uuaaii = = ΣΣll≤≤ii≤≤mmaaii + + ΣΣmm+1+1≤≤ii≤≤uuaaii

2-21Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 1: Maximum elementExample 1: Maximum element

2-22Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 1: Maximum element (Con.)Example 1: Maximum element (Con.)

The basic operation is a comparison of two numbers.The basic operation is a comparison of two numbers.

C(n) is the number of times the comparison is executed.C(n) is the number of times the comparison is executed.

2-23Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 2: Element uniqueness problemExample 2: Element uniqueness problem

2-24Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 2: (Cont.)Example 2: (Cont.)

2-25Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 3: Matrix multiplicationExample 3: Matrix multiplication

2-26Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 4: Gaussian eliminationExample 4: Gaussian elimination

AlgorithmAlgorithm GaussianEliminationGaussianElimination((AA[0..[0..nn--1,0..1,0..nn])])
//Implements Gaussian elimination of an//Implements Gaussian elimination of an nn--byby--((nn+1) matrix+1) matrix AA//Implements Gaussian elimination of an //Implements Gaussian elimination of an nn byby ((nn+1) matrix+1) matrix AA
forfor ii ←← 00 toto n n -- 22 dodo

for for jj ←← i i + 1+ 1 to to n n -- 11 do do
forfor kk ←← ii toto n n dodo

AA[[jj,,kk]] ←← AA[[jj,,kk]] -- AA[[ii,,kk]] ∗∗ AA[[jj,,ii] /] / AA[[ii,,ii]]

Find the efficiency class and a constant factor improvement.Find the efficiency class and a constant factor improvement.

2-27Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 5: Counting binary digits Example 5: Counting binary digits

It cannot be investigated the way the previous examples are.It cannot be investigated the way the previous examples are.It cannot be investigated the way the previous examples are.It cannot be investigated the way the previous examples are.

2-28Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Plan for Analysis of Recursive AlgorithmsPlan for Analysis of Recursive Algorithms

Decide on a parameter indicating an input’s size.Decide on a parameter indicating an input’s size.

Identify the algorithm’s basic operation. Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed Check whether the number of times the basic op. is executed
iff i f i (f iiff i f i (f imay vary on different inputs of the same size. (If it may, the may vary on different inputs of the same size. (If it may, the

worst, average, and best cases must be investigated worst, average, and best cases must be investigated
separately.)separately.)

Set up a recurrence relation with an appropriate initial Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is condition expressing the number of times the basic op. is
executedexecutedexecuted.executed.

Solve the recurrence (or, at the very least, establish its Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions orsolution’s order of growth) by backward substitutions or

2-29Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

solution s order of growth) by backward substitutions or solution s order of growth) by backward substitutions or
another method.another method.

Example 1: Recursive evaluation of Example 1: Recursive evaluation of nn!!

Definition:Definition: n n ! = 1 ! = 1 ∗∗ 2 2 ∗∗ … … ∗∗((nn--1) 1) ∗∗ nn for for n n ≥≥ 1 and 0! = 11 and 0! = 1

Recursive definition of Recursive definition of nn!: !: FF((nn) =) = FF((nn--1) 1) ∗∗ nn for for n n ≥≥ 1 and 1 and
FF((0) = 10) = 1

Size:Size:
Basic operation:Basic operation:
R l tiR l ti

2-30Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Recurrence relation:Recurrence relation:

Solving the recurrence for M(Solving the recurrence for M(nn))

M(n) = M(nM(n) = M(n--1) + 1, M(0) = 01) + 1, M(0) = 0
M() M(M() M(1) + 11) + 1M(n) = M(nM(n) = M(n--1) + 11) + 1

= [M(n= [M(n--2) + 1] + 1 because M(n2) + 1] + 1 because M(n--1) = M(n1) = M(n--2) + 12) + 1
= M(n= M(n--2) + 22) + 2 M(n M(n 2) + 22) + 2
= [M(n= [M(n--3) + 1] + 23) + 1] + 2
= M(n= M(n--3) + 33) + 3(())
......
= M(n= M(n--i) + ii) + i
= M(n= M(n--n) + n when i = n.n) + n when i = n.
= M(0) + n = n.= M(0) + n = n.

2-31Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 2: The Tower of Hanoi PuzzleExample 2: The Tower of Hanoi Puzzle

1 31 3

2

Recurrence for number of moves:Recurrence for number of moves:

2-32Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Recurrence for number of moves:Recurrence for number of moves:

Solving recurrence for number of movesSolving recurrence for number of moves

M(M(nn) = 2M() = 2M(nn--1) + 1, M(1) = 11) + 1, M(1) = 1

2-33Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Tree of calls for the Tower of Hanoi PuzzleTree of calls for the Tower of Hanoi Puzzle

 n

n-1 n-1n-1 n 1

n-2 n-2 n-2 n-2
...

1 1

...
2

1 1

2

1 1

2

1 1

2

2-34Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Example 3: Counting #bitsExample 3: Counting #bits

2-35Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Solving A(n)Solving A(n)

2-36Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Fibonacci numbersFibonacci numbers

The Fibonacci numbers:The Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, …0, 1, 1, 2, 3, 5, 8, 13, 21, …0, 1, 1, 2, 3, 5, 8, 13, 21, … 0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci recurrence:The Fibonacci recurrence:
F(F(nn) = F() = F(nn--1) + F(1) + F(nn--2) 2)
F(0) = 0 F(0) = 0
F(1) = 1F(1) = 1

G l 2G l 2ndnd d li h ithd li h ithGeneral 2General 2ndnd order linear homogeneous recurrence with order linear homogeneous recurrence with
constant coefficients:constant coefficients:

aaX(X(nn) +) + bbX(X(nn--1) +1) + ccXX(n(n--2)2) == 00

2-37Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

aaX(X(nn) +) + bbX(X(nn--1) + 1) + ccXX(n(n--2) 2) == 00

Solving Solving aaX(X(nn) +) + bbX(X(nn--1) + 1) + ccX(X(nn--2) 2) == 00

Set up the characteristic equation (quadratic)Set up the characteristic equation (quadratic)
arar22 ++ brbr ++ cc == 00arar22 + + brbr + + cc == 00

Solve to obtain roots Solve to obtain roots rr11 and and rr2211 22

General solution to the recurrenceGeneral solution to the recurrence
if if rr1 1 and and rr2 2 are two distinct real roots: X(are two distinct real roots: X(nn) =) = ααrr11

n n + + ββrr22
nn

if if rr1 1 == rr2 2 = = rr are two equal real roots: X(are two equal real roots: X(nn) =) = ααrrn n + + ββnrnr nn

Particular solution can be found by using initial conditionsParticular solution can be found by using initial conditions

2-38Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Application to the Fibonacci numbersApplication to the Fibonacci numbers

F(F(nn) = F() = F(nn--1) + F(1) + F(nn--2) or F(2) or F(nn)) -- F(F(nn--1) 1) -- F(F(nn--2) = 02) = 0

Characteristic equation:Characteristic equation:

Roots of the characteristic equation:Roots of the characteristic equation:

General solution to the recurrence:General solution to the recurrence:General solution to the recurrence:General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:Particular solution for F(0) =0, F(1)=1:

2-39Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

Computing Fibonacci numbersComputing Fibonacci numbers

1.1. DefinitionDefinition--based recursive algorithmbased recursive algorithm

2.2. Nonrecursive definitionNonrecursive definition--based algorithmbased algorithm

3.3. Explicit formula algorithmExplicit formula algorithm

4.4. Logarithmic algorithm based on formula:Logarithmic algorithm based on formula:

FF((nn--1)1) FF((nn)) 0 10 1==
nn(()) (())

FF((nn)) FF((nn+1)+1) 1 11 1
==

ff ≥≥11 i ffi i t f ti t ii ffi i t f ti t i

2-40Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 2

for for nn≥≥1,1, assuming an efficient way of computing matrix powers.assuming an efficient way of computing matrix powers.

