Chapter 2

introduction to The DeSign & I

Fundamentals of the Analysis | m Analysisof- A|go|-i_thms

of Algorithm Efficiency e o

PEARSON

D
Addison
Wesley Copyright © 2007 Pearson Addison-Wesley. All rights reserved.

Analysis of algorithms

Issues:
correctness
time efficiency
space efficiency
optimality

Approaches:
theoretical analysis
empirical analysis

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Theoretical analysis of time efficiency 1T

Time efficiency is analyzed by determining the number of
repetitions of the basic operation as a function of input size

Basic operation: the operation that contributes most
towards the running time of the algorithm

Input size

T(n) = c,,C(n)

running time.~ ayecution time Number of times

for basic operation basic operation is
executed

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Input size and basic operation examplei y

" u

Problem Input size measure Basic operation

Searching for key in a | Number of list’s items,

. . . Key comparison
list of n items i.e.n y P

Multiplication of two Matrix dimensions or Multiplication of two
matrices total number of elements | numbers

Checking primality of | n’size = number of digits

. . . . Division
a given integer n (in binary representation)

Visiting a vertex or

Typical graph problem | #vertices and/or edges traversing an edge

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Empirical analysis of time efficiency 1T

Select a specific (typical) sample of inputs
Use physical unit of time (e.g., milliseconds)
or

Count actual number of basic operation’s executions

Analyze the empirical data

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:
Worst case: C, () — maximum over inputs of size n
Best case: C, (7)) — minimum over inputs of size n

Average case: C, .(n)— “average” over inputs of size n
Number of times the basic operation will be executed on typical input
NOT the average of worst and best case

Expected number of basic operations considered as a random variable
under some assumption about the probability distribution of all
possible inputs

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example: Sequential search

ALGORITHM SequentialSearch(A[0..n — 1], K)

//Searches for a given value in a given array by sequential search
/[Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element of A that matches K
/! or —1 if there are no matching elements
i <0
while i < and A[i] # K do
[<1+ 1
if i <nreturni
else return —1

Worst case

Best case

-
= Average case

w ‘ Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Types of formulas for basic operation’s count

',','.

Exact formula
e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific
multiplicative constant

e.g., C(n) = 0.5 n?

Formula indicating order of growth with unknown
multiplicative constant

e.g., C(n) = cn®

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Order of growth ’, ' "

Most important: Order of growth within a constant multiple
as n—oo

Example:

How much faster will algorithm run on computer that is
twice as fast?

How much longer does it take to solve problem of double
input size?

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Values of some important functions as n — o

Irf

n |logon n nlogy,n n? n® 27 !

10 3.3 107 33107 107 10° 107 3.6-10°
10| 66 10 6.610° 10* 10° 1.310°" 9.3.10%7
10° | 10 100 o010t 10 10°

104 13 104 1.3105 108 1012

10° 17 10° 1.7.10% 1010 1018

109 1 20 109 20107 1012 1018

Table 2.1 Values (some approximate) of several functions important
for analysis of algorithms

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Asymptotic order of growth

I'rs

rVra
A way of comparing functions that ignores constant factors and
small input sizes

O(g(n)): class of functions f(n) that grow no faster than g(n)

O(g(n)): class of functions f{n) that grow at same rate as g(n)

Q(g(n)): class of functions f{n) that grow at least as fast as g(n)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

doesn't
matter

g | LI A M

-y
R Figure 2.1 Big-oh notation: t(n) € O{g{n))
- m

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Big-omega

doesn't
matter

Fig. 2.2 Big-ocmega notation: t(n) € {g(n))

-y
my
R

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Big-theta

doesn't
matter

: Figure 2.3 Big-theta notation: ¢{n) € &(g{n))
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Establishing order of growth using the definition
r'r
rVra
Definition: f{n) is in O(g(n)) if order of growth of f(n) < order
of growth of g(n) (within constant multiple),

i.e., there exist positive constant ¢ and non-negative integer
n, such that

f(n) = c g(n) for everyn 2 n,

Examples:
10n is O(n?)

Sn+20 is O(n)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Some properties of asymptotic order of growth

',','.

fin) € O(f(n))
fln) € O(g(n)) ift g(n) €Q(f(n))
If f(n) € O(g (n)) and g(n) € O(h(n)) , then f(n) € O(h(n))

Note similarity with a < b

If £,(n) € O(gy(n)) and fy(n) € O(gy(m)) , then
fi(n) + fy(n) € O(max{g,(n), g,(n)})

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Establishing order of growth using limits
r'rr
yVrau
0 order of growth of T(n) < order of growth of g(n)
lim 7(n)/g(n) = ¢ > 0 order of growth of 7(n) = order of growth of g(n)
n—>0o0

oo order of growth of 7T(n) > order of growth of g(n)

Examples:
* 10mn

* n(n+1)/2

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

L’Hopital’s rule and Stirling’s formula

L’Hopital’s rule: If lim, , f(n) =1lim, g(n)=o and
the derivatives f', g° exist, then

lim S _ gy 0

nso 2(N) nso & (n)

Example: logn vs. n

Stirling’s formula: n! = (2nn)2 (n/e)"
Example: 2" vs. n!

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Orders of growth of some important functions

',','.

All logarithmic functions log, » belong to the same class
O(log n) no matter what the logarithm’s base a > 1 is

All Polynomials of the same degree k belong to the same class:
an*+a,_n*+... +a,e On"

Exponential functions ¢” have different orders of growth for
different a’s

order log n <order n% (0>0) <order a" <order n! <order n"

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Basic asymptotic efficiency classes

constant

logarithmic

linear

n-log-n

quadratic

cubic

exponential

factorial

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Time efficiency of nonrecursive algorithlnllg

General Plan for Analysis

Decide on parameter n indicating input size

Identify algorithm’s basic operation

Determine worst, average, and best cases for input of size n

Set up a sum for the number of times the basic operation is
executed

Simplify the sum using standard formulas and rules (see
Appendix A)

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Useful summation formulas and rules

ZISlSul — 1+1+...+1 = Uu- l+ 1
In particular,X,_._1=n-1+1=n € O(n)

Yicicy i = 112+...+n = n(n+1)/2 = n?*/2 € O(n?)
Y icicy 12 = 12422+, .+n? = n(n+1)(2n+1)/6 = n3/3 € O(n?)

Yocicy @ =1+a +...+a" =(a"*1-1)/(a-1) for any a#1
In particular, X, 2 =20+ 21+, +27 =2"1.1 € O(2")

2(a;x£b;)=2a;£2b; Xca; =ca; X ,0; = Lo, X 1<icul;

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 1: Maximum element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
/[Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval <— A[0]
fori < 1ton—1do

if Ali] > maxval

maxval < Ali]

return maxval

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 1: Maximum element (Con.) I

The basic operation is a comparison of two numbers.

C(n) is the number of times the comparison is executed.

n-1
Cn)= >1=n-1= 06(n)

i=1

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 2: Element uniqueness problem
I'rr
Vru
ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
/ and “false” otherwise
fori < Oton —2do

forj <—i+1ton—1do

if A[i]= A[/] return false

return true

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 2: (Cont.)

Cworst 18 the largest number of comparison
-2 n-1

Cworst = Z Zl
i=0 j=i+l
Hz_lz[(n— D—-(i+1)+1]
2
Z (n—1-1)

Z(n 1) - Zz

-2
(1) 1)~ [(” 2,

(?’? 2)(?? D

(n-1)* -
(n—Dn _

—h —??2 o ()

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 3: Matrix multiplication Y

A
ALGORITHM MatrixMultiplication(A[O..n — 1, 0..n — 1], B[O..n — 1. 0..n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
//Input: Two n-by-n matrices A and B
/[Output: Matrix C = AB
fori < Oton —1do
forj <0ton—1do
Cli, j] < 0.0
fork < Otorn 1do
Cli, j] < Cl[i, j]+ Ali, k] = B[k, j]
return C

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 4: Gaussian elimination

Algorithm GaussianElimination(A[0..n-1,0..n])
/[Implements Gaussian elimination of an n-by-(n+1) matrix 4

fori< Oton-2do
forj< 1+1ton-1do
for K < 1tondo

Ali,K] < A[j,k] - ALi,K] * A[j,il / Ali,i]

Find the efficiency class and a constant factor improvement.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 5: Counting binary digits

ALGORITHM Binary(n)
/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count <1
while n > 1 do
count < count + 1
n<|n/2|
return count

It cannot be investigated the way the previous examples are.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Plan for Analysis of Recursive Algorithms
I'r!

Decide on a parameter indicating an input’s size.
Identify the algorithm’s basic operation.

Check whether the number of times the basic op. is executed
may vary on different inputs of the same size. (If it may, the
worst, average, and best cases must be investigated
separately.)

Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.

Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 1: Recursive evaluation of n!

Definition: n!=1*2=* ... *(n-1) *n forn 21 and 0!=1

Recursive definition of n!: F(n) = F(n-1) *n forn 21 and
F0)=1

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) xn
1Ze:

Basic operation:

=y Recurrence relation:
m

-
w ‘ Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0
M(n)=M(n-1) +1
=[M(n-2)+1]+1 because M(n-1) =M(n-2) +1
= M(n-2) + 2
=[M(m-3) +1] +2
=M(n-3)+3

= M(n-i) +1i
=M(-n) +n wheni=n.
=M(0) + n =n.

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 2: The Tower of Hanoi Puzzle”'

Recurrence for number of moves:

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Solving recurrence for number of moves
r'rr
M(n)=2M(n-1) +1, M(1) =1

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Tree of calls for the Tower of Hanoi Puzzle

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Example 3: Counting #bits

ALGORITHM BinRec(n)

[Input: A positive decimal integer n

//{Output: The number of binary digits in »’s binary representation
if » = 1return 1

else return BinRec(|n/2|) + 1

The number of addition A(n) is given by

Am)=A(ln24)+1 forn>1

Initial condition A(1)= 0.

Considernis a powerof2, i.e.,n= 2% for somek.
AQRH=AQ")+1 fork=>0

AQR2H=A(1)=0.

-y
- m
- my

Copyright © 2007 P Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Solving A(n)

Solution:

AQ2H=AQ2H)+1
=[A@*?+1]+1
=AQ2¥?)+2

— AQS) + i
=AQ2+k fori=k.
=k.

n =2k Hencek = log,n.
So, A(n) = logon=06(logn)

-y
- m
- my

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Fibonacci numbers

The Fibonacci numbers:
0,1,1,2,3,5, 8,13, 21, ...

The Fibonacci recurrence:
F(n) = F(n-1) + F(n-2)
F0)=0
F1)=1

General 2"¢ order linear homogeneous recurrence with

constant coefficients:
aX(n) + bX(n-1) + cX(n-2) =0

-y
- m
-y

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Solving aX(n) + bX(n-1) + cX(n-2) =0

Set up the characteristic equation (quadratic)
ar*+br+c=0

Solve to obtain roots »; and r,

General solution to the recurrence
if », and r, are two distinct real roots: X(n) = ar,” + Br,"
if r,=r,=r are two equal real roots: X(n) = ar"+ Bnr™"

Particular solution can be found by using initial conditions

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Application to the Fibonacci numbers

F(n) = F(n-1) + F(n-2) or F(n)-F(n-1)- F(n-2)=0
Characteristic equation:
Roots of the characteristic equation:

General solution to the recurrence:

Particular solution for F(0) =0, F(1)=1:

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

Computing Fibonacci numbers

Definition-based recursive algorithm
Nonrecursive definition-based algorithm
Explicit formula algorithm

Logarithmic algorithm based on formula:

Fin-1) Fm) _ 01 "
F(n) F(n+1) 1 1

for n>1, assuming an efficient way of computing matrix powers.

Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2 ed., Ch. 2

